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ON THE STRESS ANALYSIS OF AN ELLIPTIC PLATE
BY THE METHOD OF FILONENKO-BORODICH

B. P. SINGH and J. MAZUMDAR

Department of Applied Mathematics, The University of Adelaide, South Australia

Abstract—The stress distribution due to an arbitrary external in-plane load on the edges of a thin elastic plate has
been studied. An approximate solution to the problem has been obtained by a method due to Filonenko-Borodich
who used it originally for solving the corresponding problems for a rectangular plate and for the problem of the
equilibrium of an elastic parallelepiped.

1. INTRODUCTION

THis paper deals with an approximate solution for the stress distribution at any point of a
thin elastic elliptic plate whose edges are subjected to an arbitrary load by a method due to
Filonenko-Borodich 1] which was used by Singh [2] for solving a three-dimensional
problem of an elliptic prism.

In Section 1, a brief resume of the general method is included. Section 2 deals with the
application of the method to the case of an elliptic plate. As an illustration of the procedure,
the method has been applied in Section 3 to a particular numerical example. Since the
method represents the solution in the form of an infinite series, which involves a good deal
of operations of a simple nature, punch-card machines were employed in obtaining the
numerical results given in this paper. All details of the example are explained by graphs.

2. THE METHOD

The problem to be treated in this paper is that of a plate of elliptical boundary. Hence
we consider throughout the elliptic co-ordinates (£, #) which are related to the cartesian
co-ordinates (x, y) by

x+1iy = ¢ cosh{& +in), c> 0. 2.0

Thus
x == ¢ cosh € cosy, y = csinh {siny 2.2)

and
ax\* [oy\*  [ex\* [ev\r

(5 + ) = (o) (5 = @

where
k = sinh?¢ +sin?y. 2.4
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The equations ¢ = const. and » = const. represent systems of confocal elipses and
hyperbolas respectively. The centre of any ellipse ¢ = const. has the elliptic co-ordinates
(0, n/2) and the focii have the co-ordinates (0, 0) and (0, n). The cartesian equation of the
bounding ellipse is taken as

—+5 =1 a>bh=>0. {2.5)

The boundary will be expressed in elliptic co-ordinates by £ = x > 0 where » 1s determined
by

a=ccosha, b =csinha and ¢* = a?—h> 2.6)

It is well known that in plane problems the stress components 7;; in cartesian co-ordinates
are derived from a single stress function ¥ such that

”21// (721// 3y

Tex = vy TOATE =

vt oxt ' (\9\

where y satisfies the biharmonic equation
VHy =0

In elliptic co-ordinates the corresponding stress components are given by [3].

Lo oy oy
2T, -+ - sinh 2¢ — .~ sin 2
e = {7’1 7k2( - 81 o sin 2y
1 ¢y oy o v
2. 2 vY I b v 3
g = (“/g0n+ 7k"-( —sin 2n + A sinh 2¢ (2.7}
s 1 ('Zw o Oy

et sin 2n —-. - sinh 25)
A

+
L 7k2( on

where ¥ satisfies the biharmonic equation in elliptic co-ordinates, namely.

L U1, 2
Vi=aleViTie

and that

h?2¢ 4 sin?2
sinh 2r—+>m 7;17)V2 Mn fikg——bp ”Vf](ﬁ =0 (2.8)

L V= VAV

We shall suppose that on the boundary of the plate ¢ = x act forces of the general type
given by

S=a = ,(’7)’ T{n'{ix = g(’?) (29)

where each of the functions /() and g(n) can be expressed as Fourier series

Sn) = "*1;0 + Z (a, cos ny + b, sin ny),
= n=1

| 4 _ »
gln) = %O+ Y (d, cos nn +c, sin nn). (2.10)

£ on=1
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If we can find a stress function (¢, ) which satisfies the equation (2.8) and that the stress-
components derived from it according to (2.7) satisfy the boundary conditions (2.9) then
we can determine the stress distribution at any point of the plate completely.

However, in practice, it is difficult to find a function @(Z, ) satisfying both (2.8) and (2.9).
Therefore, following Filonenko-Borodich we will express the function ¢ as the sum of two
functions in the form

0 = o, )+l n). (2.11)

The function ¢, is called the basic function and the function ¢, is called the correcting
function. We require that the functions ¢, and ¢, are such so that the stress components
1) and %) derived from ¢, reduce to the given values f{y) and g(r) respectively on the
boundary ¢ = a where as the stress components 1%} and §) derived from the function ¢,
vanish on the boundary. Consequently, the functions @,{&, #) and @ (¢, n) being summed
satisfy the boundary conditions (2.9} of the problem.

The construction of the basic function ¢, offers no difficulty in principle but it is found
to be more or less involved depending on the complexity of prescribed boundary loads.
However, the construction of ¢, does not depend on the given load since stress components
derived from it must vanish on the boundary ; hence it can be constructed once and for all
for a given plate. In general, the functions ¢, and ¢, do not satisfy the btharmonic equation
(2.8). If they do so, then the exact solution of the problem is obtained. On the other hand,
we stipulate to obtain an approximate solution by choosing ¢, in such a way so that it
contains linearly several arbitrary constants admitting the variation of the function ¢,
and permitting the state of stress of the plate to be varied so as to satisfy the boundary
conditions. The greater the number of terms we introduce in ¢, the closer we come to the

satisfaction of the equation (2.8) and hence the more closely we come to the exact solution.
The constant co-efficients in ¢, can be determined by any of the direct methods in the
variational calculus.

3. DISCUSSION

We now discuss, in detail, the method described in the previous section and outline a
technique for the construction of the basic and correcting functions. The correcting function
@&, 1) is to be constructed such that the stress components 7§ and 1§) derived from it must
vanish on the boundary ¢ = « of the plate. This condition is, however, fulfilled if ¢ (&, %)
satisfies

2

0 0
= —odé&n) = a_éz(Pc(‘fa n =0 (3.1)

X(R)
{=a aé &=a E=a

which is apparent from (2.7). The function ¢ (¢, ) satisfying all the required conditions,
may be conveniently constructed in the form

0 = T3 Ak’ sin (& + )PP ) (32)

m n
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where P,(£) and P,{n) are so called cosine-binomials {1}

mmn . .
P,(¢) = cos ;E(Hoc —cos(m+2) 0{(c_+ac), 0<¢<ua

Pn) = cos np —cos(n-+2)y, O0<y <2n
mou =024

and A4,,, are the arbitrary constant coefficients which can be determined by using any of the
direct methods.

We shall, however, use here the Galerkin method for the determination of these
parameters. The cosine-binomials satisfy the required boundary conditions. Systems of
these functions are complete and closed. If we derive the stress components in (2.7) by
means of the correcting function (3.2) then we note that as a consequence of the boundary
properties of the cosine-binomials the entire contour of the plate will be free of stresses. The
completeness of the function system (3.3) and the arbitrariness of the coefficients 4,,, allow
one to realize an extremely wide class of functions by this means.

Returning now to the construction of the basic function ¢, it is apparent that its
construction is much more difficult in the elliptic co-ordinate system than in the cartesian
system. Since the basic stress function is to be constructed in such a manner so that the
stress components 15 and ) derived from it according to (2.7) must satisfy the prescribed
boundary condltlons on the contour ¢ = a of the plate, one of the possible ways of its
construction is to seek it in the form of the series

@ = 2, Cops {34)

where C, are constants to be determined from the prescribed boundary conditions and ¢,
are suitably chosen functions which may be harmonic, biharmonic or the combination of
both or even arbitrary. We will come to this discussion in more detail in the next section.
Substituting the expression (3.2) and (3.4) in (2.8) we obtain

Vi = VH@p+ o) = &(&n: Ay (3.5)

where &(&, n1; A,.,) which is, in general, not identically equal to zero can be viewed as an error
function. The arbitrary constant coefficients 4,,, appearing in the error function can be
determined by using Galerkin’s orthogonality conditions

f f e(&, n; Ank® sin %{f +)POPdQ =0  i,j=0,24,... (3.6
Q
which in this can be written as

a 2
[ o it sin Z e+ PP dE dr
00

x ol
— [ [ et sin e rop@pmdzan 3
0 Yo &

where we have used the notation

L 2nx 2
L= 1[1‘74 2(smh 2l ,  5inh?2¢ +sin Zq. 38)

Z e (:+s:m Zna Vi+ R
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4. ILLUSTRATION

As an illustration of the procedure, let us consider the following particular problem.
Suppose that the edge of the plate £ = « is acted upon by compressive forces of the type
(Fig. 1)

fn) = —(A+ucosly), A>u=>0

4.1
g0n) = 0. )
A-p
At i Mg
A-p
Fic. 1.

In this case, we have
4.2)

Tople=a = 0.

In order to determine the basic stress function ¢, corresponding to the boundary conditions
(4.2), we take ¢, in the form

6
Pp = Z Cn(on (43)
n=0

where ¢, . .., @¢ are chosen as follows
¥ = (3 cosh 2a cosh 4a—4 cosh 4 cosh2& + cosh 2a cosh 4a)
(3 cosh 2 cosh 4a — 4 cosh 4o cos 25 + cosh 2« cos 4y)
@, = (cosh 2£ —cosh 2a)(cosh 20 —cos 2n)
@, = {cosh 4a cosh 2& —cosh 2« cosh 4&)(cosh 2o —~cos 2n)
{1 +2 cosh 2a cos 2n)
@3 = (cosh 20 —cosh 2&)(cosh 2o —cos 2y)(cosh 2£ +cos 21)
@, = cosh 2&+cos 27
@s = cosh4&+cos 4n
@ = cosh 4 cos 4y 4.4)
and C, are unknown constants to be determined from the boundary conditions. It is to be

mentioned that most of the functions in (4.4) have previously been used by Galerkin [4]
for the analysis of deflection of an elliptic plate,
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The boundary conditions (4.2) reduce to

7—{/ + 1 cos 2n)(cosh 2a —cos 2n)*
(Pb{ . j Gy . Ay -
cosh 22 —cos 2 +sinh 2 %— --sin 2 {7@ 4.5
- ], vimn2a{ 2| 2|
oy @
—(cosh 20— Los2n){”f} +sm211% l’} +sinh 7oc{ b} =0 (4.61
acen) g, o,

After substituting (4.3) in (4.5) and (4.6) using the expressions (4.4), we obtain two equations
in sines and cosines of 5. Since these two equations must be true for all values of , equating
the constant member, the coefficients of various cosine and sine terms we obtain only
seven equations [four from (4.5) and three from (4.6)] for the determination of seven
unknown constantscy, ¢y, .. ., ¢¢. Forexample, the equation which corresponds to equating
the constant member in (4.5) is given by

3Co(—cosh 142+ 3 cosh 10 — 3 cosh 6a + cosh 2a) + 5C {(cosh 6a - cosh 2)
—4C5(cosh 8x—2 cosh da + 1)+ C4(2 + cosh 4x) + 2C s(cosh 62 — cosh 2x)

N

= %{2;4 cosh 20— A(2+ cosh 4a)}. 4.7
Similarly, equating the coefficient of sin 25 in (4.6) equal to zero, we obtain
2C (2 sinh 4o —sinh 8uat) + C,(sinh 8a + 4 sinh 4a) + 2C; sinh 2a + 8C sinh 4o = 0. (4.8)

Solving the seven equations obtained in this way, we finally get

CO = 07 (4(”
1 M . . . .

C, = .+ (—120sinh 14a+ 228 sinh 12— 264 sinh 100+ 264 sinh 8«
J sinh 2a
— 108 sinh 65 + 12 sinh 4o + 36 sinh 22) "‘f‘z’“’ (410

48

C, = —7M(cosh 8ot —cosh 6 + cosh 4a —cosh 2a), 4.1
4 M ) . ) : .

Cy = 7 Snhoa {3 sinh 16a — 3 sinh 144+ 17 sinh 122 — 15 sinh 10+ 11 sinh 8a
— 15 sinh 6a — 15 sinh 40— 3 sinh 2a), (4.12)

C, = %(3 cosh 180 — 3 cosh 16a+ 12 cosh 140 — 12 cosh 124 — 3 cosh 10x

—21 cosh 6+ 12 cosh 4o+ 9 cosh 2a +9)+%§(2u cosh 200 —34), (4.13)
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2

(cosh 120.4+4 cosh 8a —cosh 4o —4) cosh 4a —c—u , 4.14)

Cs = 48

C¢ = —(—cosh 120 —4 cosh 8 + cosh 4a +4), (4.15)

IS

in which the notations
J = 24(—cosh 10 + cosh 8x—4 cosh 6a +4 cosh 40 —cosh 2a —1)
. (—cosh 1200 —4 cosh 8a+ cosh 4a+ 4)
—48(cosh 14a + cosh 100 —9 cosh 6a + 7 cosh 2a)
. (cosh 8a — cosh 6+ cosh 4o — cosh 20), (4.16)
M = % . uc*(cosh 20 —cosh 6a)

were employed.

5. A NUMERICAL EXAMPLE

Let us consider a numerical example illustrating the theoretical solutions of the previous
section by taking o = 1.
The basic stress function ¢, is written as

@Oy = Cn@n (51)

n

™M

1

where C, and @, are the expressions for C, and ¢, respectively obtained after replacing «
by unity. The correcting stress function ¢, becomes

9 = LT Ak’ sin 21+ OP(2)P,(n) (52)
where
P () = cos %(1 +é) —cos(m+2)g(1 o (5.3)

Substituting ¢, and ¢, given by (5.1) and (5.2) in (3.7) and noting that

L@+ @2+ P4+ P6) =0 (5.4)
and
_ 256 .
L(Cyp3+Csi5) = C—4(2C5 —C5cosh?2) (5.5)
the equation (3.7) transforms into
256 .~ Lperm o oon _
—C—4(ZC5_C3 cosh 2) L fo k* sin E(l-{-é)Pi(ﬁ)Pj(rl)df dn

1 p2x

LR sin 5+ QPPN sin S0+ OPOP) dEdn  (56)

0
mnij=0,2...
from which the constants A4, are determined.
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Considering the first approximation by taking m = n = 0, the equation for the deter
mination of Ay, is obtained by putting m = 5 == i = j = 0 in (5.6) which after integration
and calculation leads to

A
—550-284001 792 = 500-558028"" (5.7)
¢ [
whence
AOO = 0‘909635“('3< {58)

Thus the stress components at any point of the plate to the first approximation are obtained.

For the second incomplete approximation we consider only two constants, namely,
Ago and A,, by taking m = n = 0, 2. The two equations to determine 4., and 4,, from
(5.6) are

25 . . T S
~ (205~ Cy cosh 2) f f K sin (1 + E)Po(&)Pol) & dy
0 Jo =

1 p2n
=[] [AOOELWsin§(1+é)Po(é)Pow)}HAn[uwsm§-<1+5>P2<6>P2mm]
0 Yo = i -

K sin D (14 )P E)P(n) dE diy (5.9)

and

256~ - S R - ‘
~~»«C~4——(2C§—C3 cosh 2)J f k* sin 5(1+<,)P2(<E)P2(;1)d§ dn
0 Yo

1 2n
= f J- [AOO{L{[{?’ sin g(l + f)Po(é)Po("i)H +A22[L{k3 sin g(l ‘3‘5)?2(@1)2('7}}]:}
0 Yo

K sin (1 4+ &P, (9P (n) dE dn (5.10)
from which after integration and calculation we have

'Z { —550-284001 40 — 5200026794, = 500-558028% (5.11)
.

and

}4{151-10128A00+660—123O92A22} = - 101-868527%, (5.12)
.

Solving (5.11) and (5.12) for A and 4,, we obtain
Ago = —0974624uc*
A,, = 00687726uc*

Thus the stress components to the second incomplete approximation can be written down
as in the case of first approximation.
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It is interesting to note that when u = 0, we arrive at the case of uniform in-plane
compressive forces (—4) i.e. the plate is under two-dimensional hydrostatic loading in its
plane. In this case, from (4.9)+4.15) and (5.13), we have

Cl262263265=C6=A00=A22:05
S (5.14)

Oy
FS
]

and that the stress components at any point in the plate are given by

= —h Ty =0, Ty= —A (5.15)

m
as expected.

The distribution of stress components on an internal ellipse ¢ = 1 are plotted against
in Figs. 2-4 for 1 = 2 p.

First approximation—.__
Second approximation
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First approximation .
Second opproximation

Py =

6. CONCLUDING REMARKS

From the foregoing analysis it is clear that the method outlined in this paper may be
applied to the more general case of an elliptical plate subject to any forces acting on its edges.
The analytical procedure presented here is straightforward. In the case of other distributions
of tractions over the boundary & = « of the plate, we have only to change the form of the
basic function ¢, . The form of the correcting function remains the same.

The functions ¢, appearing in the expression (3.4) for ¢, can be constructed arbitrarily
but care should be taken such that they do not create any difficulty in the integrations when
substituted in (3.7). In fact, the functions we have used for ¢, in (4.4) are due to Galerkin
which are very useful and can be used for other types of loadings in conjunction with
suitably chosen additional functions according to the requirement.
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Adcrpant—Vecnenyeres pacnpeneiienue HanpsokeHud, BCIEOCTBue NPOU3BOSBHON BHEIIHEH HAPYIKH,
AeHCTBYIOUICH B TUIOCKOCTH, HA KPAAX TOHKOH ynpyro#i nnacTHHKyY.

Monyuaerca apubmKEHHOE PEUICHHE, HPHMEHAS METOI Punonenko-60poaNYa, KOTOPBIH BNEPBbLIC
HCHIOJML30BAA ITOT METON U1 PacdeTa COOTBECTBYIOWINX 3a4ad MPAMOYTONBHOR NAACTHHKM W 5s
JaJAYM PABHOBECHA YNIPYTOro Hapasienuneaa.



